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Abstract. The dynamics of a single hole in the t−J model is solved exactly for all temperature, T , in the
limit of large spatial dimensions, d =∞, using the Feenberg renormalized perturbation series. We focus in
particular on single-particle spectra, together with optical and static hole conductivities. Explicit results
are illustrated for a Bethe lattice, and exemplify the continuous thermal evolution of the underlying string
picture from the T = 0 string-pinned limit through to the paramagnetic phase. Quenched site-disorder
is also readily incorporated, exact results thereby being obtained for the interplay between disorder and
thermally-induced hole dynamics.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.)

1 Introduction

The dynamics of a hole in an antiferromagnetic insulator,
as described by the t−J model [1], represents a classic
example of a strongly correlated electron problem: hole
motion, via a nearest neighbour hopping amplitude t, oc-
curs in a restricted subspace of no doubly occupied sites
and is strongly coupled to spin excitations of the under-
lying undoped insulator, themselves described by an anti-
ferromagnetic Heisenberg model, ĤJ , with nearest neigh-
bour exchange coupling J . Stimulated in part by a desire
to understand high-Tc superconducting materials at low
hole doping, intense study of the t−J model has ensued
(reviewed e.g. in [2]), building upon early pioneering foun-
dations [3–5].

The so-called string picture [5–10] has proven cen-
tral to an understanding of the t−J model at T = 0,
and exemplifies the strong coupling between hole motion
and the spin background. It arises clearly at the ‘Ising
level’ wherein transverse (spin-flip) interactions in ĤJ are
neglected. Here, since the Néel spin configuration is the
T = 0 ground state for bipartite lattices, single-step hole
motion (Fig. 1) incurs of necessity an exchange energy
penalty at each step, generating a linear confining poten-
tial: subject to the neglect of Trugman loop paths [11], the
hole is then localized by the string of upturned spins cre-
ated by its motion in the Néel state. Spin-flip interactions
in ĤJ , as well as Trugman processes, induce string un-
winding and hence a finite hole mobility, thus mitigating
against the simple string picture. Nonetheless, as known in
particular from numerical studies [2,12,13], the underly-
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Fig. 1. Single-step hole motion as discussed in the text,
with Es/Es′ the exchange energies of the spin background be-
fore/after the spin hop.

ing string picture is robust even in low spatial dimensions,
d = 2.

There is however another rather obvious mechanism,
considered in this paper, that induces a finite hole mobility
even in the Ising limit: temperature, T . This is clear since,
for T � J on which scale spin correlations are negligible,
the t−J model is in practice described by its J = 0 limit
first studied many years ago [3,4], for which the string
picture is irrelevant and wherein the hole propagates es-
sentially as a free particle. Since the underlying spin back-
ground changes radically on a scale of T ∼ J , hole dynam-
ics thus evolve accordingly. The goal then is to describe the
continuous thermal evolution of hole motion, recognizing
that while two-sublattice AFLRO persists up to the Néel
temperature TN , all sites have a non-vanishing probability,
for any finite temperature, of being occupied by a spin of
either type (σ =↑ or ↓). In consequence, and in contrast to
T = 0 where hole-motion in the Néel configuration neces-
sarily induces an exchange energy barrier, single-step hole
motion at finite-T (Fig. 1) may incur either an exchange
energy penalty or a gain, the latter processes leading nat-
urally to a finite hole mobility.
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We consider the t−J model in the limit of large spa-
tial dimensions, d = ∞, where rich results have already
been obtained (see e.g. [14–18]), and study of which both
admits the possibility of exact solutions and serves as a
mean-field starting point for a systematic approach to the
finite-d case. In particular, the large-dimensional limit has
been solved at T = 0 [14,15] and the string picture shown
to be exact. The primary physical reason for this is the to-
tal suppression of spatial fluctuations for d = ∞, whence
spin excitations are purely Ising-like [15]; a characteris-
tic which permits in consequence a ‘clean’ investigation
of thermally induced hole mobility, in isolation from the
analogous effects of the spin-flip interactions additionally
operative in finite-d.

In this paper, a complement to a recent Letter [19],
we show that an exact and physically transparent solu-
tion to the d∞ t−J model can be obtained for all tem-
peratures. In Section 2, following a brief discussion of the
thermal evolution of the pure spin background, we first
consider (Sect. 2.1) the hole Green function and hence
single-particle spectrum (D(ω)) at finite temperature, and
its connection to the usual time-ordered Green function
for the half-filled state (one electron/site). The solution
for the hole Green function is developed in Section 2.2,
and given explicitly for the case of a Bethe lattice (whose
topology underlies the well known retraceable path ap-
proximation [4] in finite-d). Here we employ the Feenberg
renormalized perturbation series [20] that is familiar in re-
lation to tight-binding models (see e.g. [21]), and whose
use in the present context amounts to a renormalization
of the Nagaoka path formalism [3,4]. The dynamical hole
conductivity is considered in Section 2.3, exact results for
which can be obtained in d∞ due to the strict suppression
of vertex corrections.

A subsidiary aim of the present work is also to study
the influence of quenched site disorder and its interplay
with thermally induced hole dynamics, an issue of im-
portance in many magnetically disordered materials. The
large-dimensional disordered t−J model has hitherto been
investigated by Strack and Vollhardt [15], in an approach
that is exact at T = 0 alone. In Section 2.4 we show that
an exact solution to this problem, for all T , follows from
straightforward extension of the basic theory developed
in Sections 2.2, 2.3. Detailed results for the single-particle
spectra and hole conductivities (dynamic and static) are
given respectively in Sections 3 and 4, for both the pure
and disordered cases; and the paper concludes with a brief
summary and outlook, Section 5.

2 Theory

The t−J Hamiltonian, Ĥ = Ĥt + ĤJ , is given by

Ĥ =
∑
i,j,σ

tij c̃
†
iσ c̃jσ +

1

2
J
∑
i,j

Ŝi · Ŝj , (2.1)

where c̃†iσ = c†iσ(1−n̂i−σ) reflects the constraint to no dou-
ble occupancy of sites by electrons; J > 0 is the nearest

neighbour (NN) exchange coupling, with the correspond-
ing lattice sum over NN sites on a bipartite lattice. In the
pure t−J model considered here the hopping matrix ele-
ment tij likewise connects NN sites only: tij = t for sites
i and j NN’s, and zero otherwise; and t and J are scaled
as

t = t∗/
√
Z, J = J∗/Z (2.2)

with Z the coordination number (= 2d for a hypercubic
lattice), in order that the limit d → ∞ be well defined.

Transverse (spin-flip) interaction terms in ĤJ contribute
only to O(1/d) and are thus suppressed entirely for d∞

[14,15]; i.e. only Ising-like spin interactions survive,
whence in practice

ĤJ ≡
1

2
J
∑
i,j

ŜizŜjz . (2.3)

We first consider briefly the pure Heisenberg model, ĤJ ,
since it is this that dictates the spin background in which
the hole moves. The key feature of d∞ is that simple
molecular field theory is exact for the Heisenberg model.
Physical properties are thus controlled by the sublattice
magnetization m(T ), given via

m(T ) =
1

2
tanh

[
2TN
T

m(T )

]
, TN =

1

4
J∗ (2.4)

where TN = ZJ/4 (kB = 1) is the Néel temperature. In

particular, the probability P̃ (s) of generating an arbitrary
spin configuration, s = {σk}, is given by an independent
product

P̃ (s) =
∏
k

pk(σk), (2.5a)

reflecting the statistical independence of the sites for d∞

(and with finite-d corrections readily shown to be O(1/d)).
Here pk(σk) is the probability that site k is occupied by a
σk-spin, given in terms of the magnetization by

pk(σk) =
1

2
[1 + 2λkσkm(T )] (2.5b)

where λk = +1(−1) for sites k belonging to the A(B)
sublattice and σk = +1(−1) for ↑ (↓) spins. In the fol-
lowing we shall often denote pk(σ) = pασ for site k be-
longing to the α = A or B sublattice, with pAσ = pB−σ
from equation (2.5b). For T = 0, where the magnetiza-
tion m(T = 0) = 1

2 is saturated, pA↑ = 1 = pB↓ and
pA↓ = 0 = pB↑, whence as expected equation (2.5a) shows
only the Néel spin configuration to be thermally possi-
ble. In the paramagnetic phase for T ≥ TN by contrast,
m(T ) = 0 and pασ = 1

2 ∀α, σ; all spin configurations are
thus equally probable. Equation (2.5) is central to the fol-
lowing analysis of hole dynamics in the t−J model. We
shall also require the energy changes, arising from the ex-
change fields generated by ĤJ , upon (i) flipping a spin on
site k from σk to −σk, and (ii) removing the σk-spin. From
elementary considerations these are given respectively by
λkσkωp(T ) and 1

2λkσkωp(T ), where

ωp(T ) = J∗m(T ). (2.6)
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2.1 Green functions

To motivate the hole Green functions that we analyze ex-
plicitly, we consider first the usual time-ordered single-
particle Green function at precisely half-filling (one elec-
tron/site). This is given by

G̃ii;σ(t) = −i
〈
T̂
(
c̃iσ(t)c̃†iσ

)〉
(2.7)

with T̂ the Wick time-ordering operator; and where

〈Â〉 = Tr(Âe−βĤ)/Tr e−βĤ with the trace over all states
{|Φs〉} of the half-filled system. Since double occupancy is

strictly precluded, it follows that (i) eλĤ |Φs〉=eλĤJ |Φs〉=
eλEs |Φs〉 for λ an arbitrary c-number, with Es the energy of

|Φs〉 under ĤJ ; (ii) only the advanced (t ≤ 0) component

of G̃ii;σ(t) survives. Hence

G̃ii;σ(t) = iθ(−t)
∑
s

P̃ (s)〈Φs|c̃
†
iσe

i(Ĥ−Es)tc̃iσ|Φs〉 (2.8)

with θ(x) the unit step function and P̃ (s)=e−βEs/
∑
se
−βEs

given by equation (2.5). For c̃iσ|Φs〉 to be non-vanishing,
the spin on site i in |Φs〉 must be σi = σ; i.e. c̃iσ|Φs〉 =

δσiσ|i; s〉 where |i; s〉, with energy Es under ĤJ , denotes
a state with a hole on site i and configuration s = {σk 6=i}
for the remaining spins. From equation (2.5),

P̃ (s) = pi(σi)P (s) (2.9)

where P (s) =
∏
k(6=i) pk(σk)

(
= e−βEs/

∑
s′ e
−βEs′

)
is the

probability of generating s = {σk 6=i}. Equation (2.8) thus
becomes

G̃ii;σ(t) = iθ(−t)pi(σ)
∑
s

P (s)〈i; s|ei(Ĥ−Es)t|i; s〉. (2.10)

Es and Es differ solely by the energy change (under ĤJ) in
removing the σ-spin from site i, as considered above; hence
Es = Es + 1

2λiσωp(T ). Transforming to the frequency do-
main

G̃ii;σ(ω) =

∫ ∞
−∞

dtei(ω−iη)tG̃ii;σ(t)

where η = 0+, equation (2.10) thus gives

−G̃ii;σ(−ω) = pi(σ)Gii

(
z −

1

2
λiσωp(T )

)
(2.11)

with z = ω + iη; where

Gii(z) =
∑
s

P (s)Gii(z) (2.12a)

Gii(z) = 〈i; s|[z − Ĥ ′]−1|i; s〉 (2.12b)

and

Ĥ ′ = Ĥ −Es. (2.12c)

Gii(z) is the hole Green function for an arbitrary spin con-
figuration s = {σk 6=i}, with Gii(z) its thermal average. It
is the hole Green function that we consider; from equa-
tion (2.11) the time-ordered functions at half-filling fol-
low simply from it (see also Eq. (2.22) below). Note from
equations (2.12b,c) that the ‘energy origin’ for Gii(z) is

the energy Es, under ĤJ , of the particular spin configu-
ration s = {σk 6=i} being considered. Hence in the atomic

limit t = 0, where Ĥ = ĤJ , Gii(z) = 1/z for any spin
configuration; likewise, since

∑
s P (s) = 1, Gii(z) = 1/z.

2.2 Solution for the hole Green function

To analyze the hole Green function, we first decompose
the resolvent operator Ĝ(z) = (z − Ĥ ′)−1 as

Ĝ(z) = Ĝ0(z) + Ĝ(z)ĤtĜ0(z) (2.13)

where Ĝ0(z) = (z − Ĥ ′J)−1, with Ĥ ′J = ĤJ − Es,

has solely diagonal matrix elements: 〈k; s′′|Ĝ0(z)|i; s〉 =

δikδss′′/z. The non-vanishing matrix elements of Ĥt are

〈j;s′|Ĥt|i;s〉= tji, where the spin configurations s′ differs
from s only by a single electron/hole transfer. Taking ma-
trix elements of equation (2.13) between 〈i; s| and |i; s〉
then gives

zGii(z) = 1 +
∑
j

Gij(z)tji (2.14a)

where

Gij(z) = 〈i; s|(z − Ĥ ′)−1|j; s′〉. (2.14b)

The resolvent operator in equation (2.14b) may itself be
iterated perturbatively in t using equation (2.13). This
amounts to the Nagaoka path formalism, as employed
originally for the J = 0 limit [3,4]; it yields Gii(z) as
an explicit function of frequency, z = ω + iη.

We adopt a different strategy, focusing on the Feenberg
self-energy Si(z) defined by

Gii(z) = [z − Si(z)]
−1
. (2.15)

The Feenberg perturbation series for Si(z) [20] has been
much studied in the context of tight binding models (see
e.g. [21]). Its unrenormalized form, wherein Si(z) is ex-
pressed as an explicit function of z, is equivalent in the
present context to the Nagaoka path formalism; little is
therefore gained with it. The general power of the Feen-
berg perturbation series is however to express Si(z) in
renormalized form, i.e. as an explicit functional of the

{G(i)
jj , G

(i,j)
kk , . . . }, where for finite-d in general G

(i,j... )
kk de-

notes a diagonal Green function with sites (i, j, . . . ) re-
moved from the system. In the d∞ limit the site removal
restrictions are irrelevant, vanishing at least as O(1/d);

e.g. G
(i)
jj = Gjj + O(1/d) for sites i, j NN’s. The Feen-

berg renormalized perturbation series thus expresses Si
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as a functional of the {Gjj}, hence enabling from equa-
tion (2.15) a self-consistent solution for the {Gjj}, as de-
sired and now considered.

Combining equations (2.15) and (2.14a) gives

Gjj(z)Si(z) =
∑
j

Gij(z)tji (2.16)

in which the explicit dependence upon z in equa-
tion (2.14a) has been eliminated. This equation is gen-
eral, and not confined to the case where tij connects only
NN sites; but for the t−J model itself, knowledge solely
of the nearest neighbour off-diagonal Green function Gij
(Eq. (2.14b)) as a functional of the {Gjj} is sufficient to
give Si ≡ Si[{Gjj}]. This is particularly straightforward
for the Bethe lattice (BL) that we consider explicitly here.
There areZ terms on the right hand side of equation (2.16)
(with Z the coordination number). For the BL, Gij(z)
must contain at least one t-bond between the NN sites i
and j, and t = t∗/

√
Z. Hence, to recover Si(z) to O(1) as

Z →∞, we require contributions to Gij(z) with one and
only one t-bond. From this it follows, in direct parallel
to the corresponding result for a tight binding model (see
e.g. [21]), that

Gij(z) = Gii(z)tij〈j; s
′|(z − Ĥ ′)−1|j; s′〉. (2.17a)

The state |j; s′〉, with energy Es′ under ĤJ , differs from
|i; s〉 only by the single hole transfer in which a σj-spin
electron has been transfered from site j to site i, see
Figure 1. Since sites j and i are nearest neighbours, and
hence on different sublattices, the spin-energy change due
to this electron/hole transfer is thus equivalent to that for
flipping a spin on site j from +σj to −σj , as considered
above (see Eq. (2.6)). Hence Es′ = Es+λjσjωp(T ), reflect-
ing either the energy cost (λjσj = +1) or gain (λjσj =

−1) due to single-step hole motion, and (z−Ĥ ′)−1 = (z−
λjσjωp(T )− [Ĥ−Es′ ])−1. From this it follows straightfor-

wardly that 〈j; s′|(z − Ĥ ′)−1|j; s′〉 = Gjj(z− λjσjωp(T )),
whence equation (2.17a) becomes

Gij(z) = Gii(z)tijGjj(z − λjσjωp(T )). (2.17b)

Equation (2.16) thus gives Si(z) as a functional of the
{Gjj}, viz.

Si(z) =
∑
j

t2ijGjj(z − λjσjωp(T )). (2.18a)

For d∞ the self-energy Si(z) is of course self-averaging,
and for any spin configuration s a fraction pj(σ) of the
Z →∞ sites j that are NN to i have σj = σ. Hence, since
t2 = t2∗/Z,

Si(z) = t2∗
∑
σ

pj(σ)Gjj(z − λjσωp(T )); (2.18b)

from equations (2.15) and (2.12a) the hole Green func-
tion is likewise self-averaging, Gii(z) = Gii(z). Denoting
Gii(z) = Gα(z) for site i on the α = A or B sublattice,

and likewise Si(z) = Sα(z), equations (2.18b) and (2.15)
thus yield

Gα(z) =

[
z − t2∗

∑
σ

pᾱσGᾱ(z − λᾱσωp(T ))

]−1

(2.19)

with ᾱ = B(A) for α = A(B).
Since pασ = pᾱ−σ and λᾱ = −λα, equation (2.19)

shows that Gα(ω) = Gᾱ(ω) ≡ G(ω): the hole Green func-
tion is independent of the sublattice, as is obvious physi-
cally. Equation (2.19) thus becomes

G(z)=
[
z − t2∗ (pB↓G(z−ωp(T ))+pB↑G(z+ωp(T )))

]−1
.

(2.20)

This is the desired equation for the hole Green function
on a Bethe lattice, with pBσ(= pA−σ) and ωp(T ) given by
equations (2.5b, 2.6) in terms of the magnetization m(T ),
whose dependence on T and J∗ in turn follows explic-
itly from equation (2.4). The limits of equation (2.20) are
well-known. For the T = 0 string-pinned limit, where
pBσ = δB↓ and ωp(0) = 1

2J∗, it reduces to

G(z) =

[
z − t2∗G(z −

1

2
J∗)

]−1

: T = 0, (2.21a)

originally obtained by Kane, Lee and Read [8] as an ap-
proximation in finite-d and later shown by Strack and Voll-
hardt [15] to be exact for d∞ at T = 0. For T ≥ TN = 1

4J∗
in the paramagnet, by contrast, m(T ) = 0 = ωp(T ) and
pασ = 1

2 , whence equation (2.20) reduces to

G(z) =

[
z −

1

2
t2∗G(z)

]−1

: T ≥ TN (2.21b)

where it is equivalent to the well-known result for J∗ =
0 [4,14] and produces the semielliptic spectrum of full
width 4t∗ characteristic of free hole motion in the d∞ BL.

Equation (2.20) is of course exact for all T , bridging
the extreme behaviours of the string-pinned limit and free
hole motion, the evolution between which naturally occurs
on the low-energy scale of TN = 1

4J∗ at which AFLRO is
melted out. And its physical content is transparent, involv-
ing just the probability (pBσ’s) with which a NN site to
the initially created hole is occupied by a σ-spin electron,
and the associated energy cost (the z−ωp(T ) shift) or gain
(z+ωp(T )) under single-step hole transfer. Illustrative re-
sults for the T and J∗ dependences of the corresponding
hole spectra will be given in Section 3.

Finally, note from equation (2.11) that the half-filled

time-ordered Green functions G̃ii;σ(ω) = G̃ασ(ω) (α = A
or B) follow directly from the hole Green function, but in
contrast to the hole Green function naturally depend on
the sublattice. Since pAσ = pB−σ, equation (2.11) gives

G̃Aσ(ω) = G̃B−σ(ω), (2.22a)

with

−G̃A↑(−ω) = pA↑G(z −
1

2
ωp(T )) (2.22b)

−G̃A↓(−ω) = pA↓G(z +
1

2
ωp(T )). (2.22c)



M.P.H. Stumpf and D.E. Logan: Hole dynamics in the t−J model 381

The corresponding majority (A ↑) and minority (A ↓)
spectra differ trivially by (i) an overall thermal weighting
(pAσ = 1

2 [1 + 2σm(T )]), and (ii) a net shift of 1
2ωp(T ) =

1
2J∗m(T ).

2.3 Dynamical conductivity

To calculate the real part of the dynamical hole conductiv-
ity, σ(ω, T ), we start (as in [15]) from the basic equations
of Rice and Zhang [22], obtained from the Kubo formula
and valid in any dimension; viz.

σ(ω, T ) =

(
e−βω − 1

)
4πωV Q

∑
q1,q2=±1

I(ω; q1, q2) (2.23)

with Q the partition function, V the system volume and
I(ω; q1, q2) given by

I(ω; q1, q2) =

∫ ∞
−∞

dω1e
−βω1 Tr

[
(ω1+iq1η−Ĥ)−1

×Ĵδ(ω1+ω + iq2η−Ĥ)−1Ĵδ

]
(2.24)

where

Ĵδ = ieta
∑
j,σ

(
c̃†j+δ,σ c̃j,σ − c̃

†
j−δ,σ c̃j,σ

)
(2.25)

is the current operator in an arbitrary direction δ, and Tr
is over all single-hole states.

To obtain an exact expression for σ(ω, T ) in infinite-d,

we consider first the partition function Q = Tre−βĤ given
by

Q =

∫
Γ

dz

2πi
e−βzTr

[
(z − Ĥ)−1

]
(2.26)

with Γ a counterclockwise contour enclosing all singulari-
ties of the integrand; and, since all L lattice sites are equiv-
alent, Tr[(z − Ĥ)−1] = L

∑
s〈i; s|(z − Ĥ)−1|i; s〉. Trans-

forming the variable in equation (2.26) to z′ = z − Es,
with Es the ‘spin only’ energy of |i; s〉 under ĤJ , and us-
ing equation (2.12a) for the averaged hole Green function
Gii(z), gives

Q = Q0L

∫
Γ

dz

2πi
e−βzGii(z) (2.27a)

= Q0L

∫ ∞
−∞

dωe−βωD(ω) (2.27b)

where Q0 =
∑
s e
−βEs is the partition function for the

spin background alone. Equation (2.27b) follows, using
Cauchy’s theorem, from the Hilbert transform

Gii(z) =

∫ ∞
−∞

dω
D(ω)

z − ω
(2.28)

where D(ω) = − 1
π

ImGii(z = ω+ iη) is the corresponding
hole spectrum.

Proceeding analogously for I(ω; q1, q2), we transform
the variable in equation (2.24) to ω′1 = ω1−Es, obtaining

I(ω; q1, q2) = Q0L

∫ ∞
−∞

dω′1e
−βω′1

×K(z1 = ω′1 + iq1η; z2 = ω′1 + ω + iq2η)
(2.29a)

where

K(z1; z2) =
∑
s

P (s)〈i; s|(z1 − Ĥ
′)−1Ĵδ(z2 − Ĥ

′)−1Ĵδ|i; s〉

(2.29b)

with Ĥ ′ = Ĥ−Es (Eq. (2.12c)). Equation (2.29b) reduces
in turn to

K(z1; z2) =
∑
s

∑
j

P (s)〈i; s|(z1 − Ĥ
′)−1|i; s〉〈i; s|Ĵδ|j; s

′〉

× 〈j; s′|(z2 − Ĥ
′)−1|j; s′〉〈j; s′|Ĵδ|i; s〉,

(2.30)

where (as in Sect. 2.2) j is a NN site to i connected to

it by the current operator Ĵδ, and the spin configuration
s′, with energy Es′ under ĤJ , differs from s solely by
the resultant single electron/hole transfer. Equation (2.30)
holds for the following reasons. First, the matrix ele-
ments of the current operator are given by 〈i; s|Ĵδ|j; s′〉 =

〈j; s′|Ĵδ|i; s〉∗ = ieta(δj,i+δ − δj,i−δ), and are thus propor-

tional to t = t∗/
√
Z. In consequence, as is well-known [15],

σ ∝ t2 ∼ 1/Z is itself proportional to 1/Z in large di-
mensions, but with σ/t2 (or equivalently Trσδδ(ω, T )) of
order unity and the quantity we seek in the limit Z →∞.
To recover σ/t2 to O(1) as Z → ∞ on a Bethe lat-
tice, only diagonal elements of the resolvent operators in
equation (2.29b) need be retained. Hence equation (2.30),
which can be written equivalently as

K(z1; z2) = 2(eta)2
∑
s

P (s)Gii(z1)〈j; s′|(z2 − Ĥ
′)−1|j; s′〉

(2.31)

(and whose form reflects the absence of vertex correc-
tions in d∞). As discussed in Section 2.2 (Eq. (2.17a)ff),

〈j; s′|(z2 − Ĥ ′)−1|j; s′〉 = Gjj(z2 − λjσjωp(T )); whence,
since the spin average in equation (2.31) is uncorrelated
in d∞,

K(z1; z2) = 2(eta)2G(z1)
∑
σ

pασG(z2 − λασωp(T ))

(2.32)

(where G(z) ≡ Gii(z)).
Equation (2.32) used in equation (2.29a), together with

equations (2.23, 2.27) and the Hilbert transform equa-
tion (2.28), lead after a straightforward integration to
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the final result for σ̃(ω, T ) = V σ(ω, T )/2(eta)2:

σ̃(ω, T ) =
π(1− e−βω)

ω

×

∑
σpασ

∫∞
−∞ dω1e

−βω1D(ω1)D(ω1+ω−λασωp(T ))∫∞
−∞ dω1e−βω1D(ω1)

·

(2.33)

In the T = 0 string-pinned limit, where (pB−σ =)pAσ =
δA↑ and ωp(0) = 1

2J∗, equation (2.33) recovers the result
of Strack and Vollhardt [15],

σ̃(ω; 0) =
π

ω
D

(
ωL + ω −

1

2
J∗

)
, (2.34)

with ωL the lower band edge of the single-particle spec-
trum; in particular, as expected physically, the dc con-
ductivity vanishes for T = 0. For a Bethe lattice,
equation (2.33) is however exact in infinite-d for all tem-
peratures. And temperature enters it in two ways: (i) ex-
plicitly, via the trivial thermal factors (e−βω); (ii) implic-
itly, via the T -dependences of pασ (Eq. (2.5b)), ωp(T )
(Eq. (2.6)) and hence, from equation (2.20), the single-
particle spectrum D(ω) = − 1

π ImG(ω + iη). The latter in
particular are crucial in a proper description of the T -
dependence of the dynamical conductivity (Sect. 4). They
are however neglected in the approximate finite-T treat-
ment of Strack and Vollhardt [15], in which only the T = 0
Néel spin configuration was used to calculate σ̃(ω;T ), and
the limitations of which will shortly become apparent.

2.4 Disorder

Quenched, uncorrelated site-disorder is easily incorpo-
rated [15] by addition to the t−J Hamiltonian of

Ĥd =
∑
i

εi (ñi↑ + ñi↓ − 1) , (2.35)

where ñiσ = c̃†iσ c̃iσ (c̃†iσ = c†iσ(1− n̂i−σ)) and the {εi} are
independent random variables with a common (normal-
ized) probability density F (εi); in practice (Sect. 3) we
consider a semi-elliptic disorder distribution of full width
2W :

F (ε) =
2θ(W − |ε|)

πW

[
1− (ε/W )2

] 1
2 . (2.36)

Inclusion of the c-number term −
∑
i εi in equation (2.35)

is solely for physical clarity (the disorder potential only
being ‘felt’, when there is a hole on a site); identical results
are of course obtained without it.

Since the Heisenberg part of the t−J Hamilto-
nian is unaffected by the disorder, the analysis of the
preceding sections carries over straightforwardly, with
thermal averages complemented by a disorder average,∫ ∏

j dεjF (εj)(. . . ). The hole Green function is given by

(cf. Eq. (2.12b)) Gii(z) = 〈i; s|(z − Ĥ ′)−1|i; s〉 where,

again, Ĥ ′ = Ĥ − Es with Ĥ the full Hamiltonian in-
cluding Ĥd; and such that in the atomic limit (t = 0),
Gii(z) = 1/(z + εi). The Feenberg self-energy is defined
by (cf. Eq. (2.15)) Gii(z) = [z + εi − Si(z)]−1, and trivial
extension of the analysis of Section 2.2 shows Si(z) to be
given again by equation (2.18b). In consequence, the full
disorder-averaged hole Green function G(ω) ≡ Gii(z) is
given exactly by

G(z) =

∫
dεiF (εi)

[
z + εi − t

2
∗

× (pB↓G(z − ωp(T )) + pB↑G(z + ωp(T )))]
−1

(2.37)

and the corresponding time-ordered Green function is
again related to G(ω) by equation (2.22). In the non-
disordered limit, F (εi) = δ(εi), equation (2.37) reduces
to equation (2.20); while in the T = 0 limit it reduces
to the known result of Strack and Vollhardt [15]. Finally,
analysis of the dynamical conductivity is likewise general-
ized straightforwardly to include disorder: equations (2.33,
2.34) again result for σ̃(ω, T ), with D(ω) = − 1

π
ImG(ω +

iη) therein given from solution of equation (2.37).

3 Results: single-particle spectra

We consider first the non-disordered case. Equation (2.20)
for the Bethe lattice is readily solved by simple itera-
tion, starting form an essentially arbitrary initial form
for G(z). In the T = 0 string-pinned limit where the
sublattice magnetization is saturated (m(0) = 1

2 , see
Eq. (2.4)), G(z) is given by solution of equation (2.21a),
and the form of the single-particle spectrum D(ω) =
− 1
π ImG(ω + iη) is well-known (see e.g. [6,8,15]): it con-

sists of a discrete series of lines, reflecting the fact that
the hole is strictly localized/confined. Lines at low fre-
quency correspond physically to strings of short length,
their separation being of order t∗[ωp(0)/t∗]

2/3 [5,6,15]
with ωp(0) = 1

2J∗ (Eq. (2.6)). High frequency lines by con-
trast correspond to long strings (which naturally have ever
decreasing weight on the ‘initial’ site, and thus diminished
spectral intensity); their separation goes asymptotically
as ωp(0), corresponding simply to the exchange energy
penalty incurred upon increasing the string length by one
lattice spacing. The T = 0 spectrum depends solely on the
ratio ωp(0)/t∗ = J∗/2t∗, and with decreasing ωp(0)/t∗ the
spectrum becomes increasingly dense.

For T 6= 0 the sublattice magnetization is no longer
saturated. From equation (2.4) m(T ) — and hence the
thermal probabilities pBσ = 1

2 [1 − 2σm(T )] that enter
equation (2.20) for G(z) — is entirely determined by
T/TN with TN = 1

4J∗ the Néel temperature. From equa-
tion (2.20), noting that ωp(T ) = J∗m(T ), the single-
particle spectrum is thus determined by two distinct
scales: T/TN and J∗/t∗. By way of illustration, Figure 2
shows D(ω) for a fixed J∗/t∗ = 0.5, at four different tem-
peratures: T/TN = 0.3(a), 0.5(b), 0.7(c) and 0.9(d). For
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Fig. 2. Single-particle spectra D(ω) vs. ω/t∗ for J∗/t∗ = 0.5
and T/TN = 0.3 (a), 0.5 (b), 0.7 (c) and 0.9 (d). The dashed
lines in Figure 2a show the discrete T = 0 spectrum; those in
Figures 2b to 2d show the fictive T = 0 spectra explained in
the text.

T/TN = 0.3 the magnetization remains close to satura-
tion, m(T )/m(0) ' 0.9974, and in Figure 2a we have su-
perimposed the corresponding T = 0 spectrum. From this
it is clear that D(ω) resembles closely its T = 0 coun-
terpart: the peak positions coincide, and thermal effects
merely induce a tiny spectral broadening. This is expected
physically since pB↓ ' 0.999, whence from equation (2.20)
hole dynamics remain overwhelmingly dominated by ma-
jority spin-hops that incur an exchange energy penalty
(reflected in the G(z − ωp(T )) shifts in equation (2.20)).

With increasing T/TN , however, minority spin-hops
that lead to an exchange energy gain become increasingly
probable. Their influence upon D(ω) is already evident
by T/TN = 0.5 (Fig. 2b) where m(T ) is only modestly
reduced to m(T )/m(0) ' 0.96, corresponding to a mi-
nority thermal probability of pB↑ ' 0.02. The spectrum,
Figure 2b, is nonetheless significantly different from its
T = 0 counterpart shown in Figure 2a, with increased
thermal broadening and the incipient formation of a
background continuum. The latter evolves with increas-
ing T/TN as illustrated in Figure 2c for T/TN = 0.7
(m(T )/m(0) ' 0.83 and pB↑ ' 0.09), where D(ω) has
acquired the characteristic of coherent structure superim-
posed upon an incoherent background, which has impor-
tant implications for the form and T -dependence of the
dynamical conductivity discussed in the following section.
With further increasing T/TN , illustrated in Figure 2d
for T/TN = 0.9 (m(T )/m(0) ' 0.53 and pB↑ ' 0.24),
the incoherent background grows at the expense of the
coherent peaks, which are gradually destroyed. High fre-
quency coherent structures are the first to be thermally
eliminated: as one expects physically since, being due to
the longest strings, these are the most susceptible to ther-
mal erosion. Finally, as T → TN− where m(T ) → 0,
all coherent structure is destroyed and D(ω) acquires the
T -independent semielliptic form with full bandwidth 4t∗
(see Eq. (2.21b)) that is characteristic of the paramagnetic
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 ω/t*

0.00

0.40

t *D
(ω

)

(b)

0.0

1.0

t *D
(ω

)

(a)

Fig. 3. D(ω) vs. ω/t∗ for J∗/t∗ = 1.0. (a) At T/TN = 0.7 —
cf. Figure 2c; (b) For the same ωp(T ) = J∗m(T ) as in Figure 2c,
here corresponding to T/TN = 0.933.

phase for T > TN , reflecting the fact that the hole propa-
gates as a free particle in the paramagnet; the emergence
of this behaviour is already apparent in Figure 2d, where
the incoherent background is almost semielliptic in form.

To show that, for all T/TN < 1, the coherent
structure in D(ω) reflects the exchange energy penalty,
ωp(T ), incurred by majority spin-hops, we superimpose in
Figures 2b and 2d the nominal T = 0 spectrum that arises
by replacing ωp(0) = 1

2J∗ by ωp(T ) = J∗m(T ) with m(T )
the magnetization at the actual T/TN of interest; i.e. from
solution of equation (2.20) with pB↓ = 1, pB↑ = 0 — so
that minority spin-hops are suppressed as at T = 0 — but
with ωp(T ) given by its value at the T/TN appropriate to
Figures 2b and 2d. Since m(T ) diminishes with increasing
T/TN , so does ωp(T ), whence the density of discrete lines
in the fictive T = 0 spectra increases with T/TN . For all
T/TN , it is indeed seen that the positions of the coherent
peaks in D(ω) correspond accurately to those of the nom-
inal T = 0 spectra (which would not of course be the case
if the exact T = 0 spectrum — shown in Fig. 2a — was
superimposed in Figs. 2b-d).

From the above results is is clear that while the net
spectral width is of order 4t∗ for all T , the character of
D(ω) changes radically on the typically much smaller scale
of TN = 1

4J∗ over which the controlling spin background
evolves from the saturated antiferromagnet to the spin-
disordered paramagnet. To exemplify the relative role of
J∗/t∗ vs. T/TN , Figure 3a shows D(ω) at T/TN = 0.7
— as in Figure 2c — but for J∗/t∗ = 1. The sublattice
magnetization m(T ) (and hence the thermal probabilities
pBσ) thus coincide with that of Figure 2c, but J∗ (and
hence ωP (T ) = J∗m(T )) has been doubled. The resul-
tant spectrum is seen to be ‘cooler’ than its counterpart
in Figure 2c: naturally, since in doubling ωp(T ) the ex-
change energy penalty due to majority spin-hops is am-
plified. By contrast, again for J∗/t∗ = 1, Figure 3b shows
D(ω) for the same ωp(T ) = J∗m(T ) as Figure 2c. Since J∗
has been doubled, m(T ) is halved compared to Figure 2c,
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corresponding to a higher temperature (T/TN = 0.933);
the resultant spectrum, Figure 3b, is thus ‘warmer’.

We note here that Obermeier, Pruschke and Keller [17]
have studied the d∞ t−J model at finite hole doping (up
to 15%), and within the framework of the Non Crossing
Approximation. We suspect, however, that their results at
low hole density (. 2% or so) may in practice barely differ
from the one-hole limit; the NCA determined Néel tem-
perature at 2% doping (Fig. 1 of Ref. [17]), for example,
is in fact indistinguishable from TN = 1

4J∗ (J∗ as used in

Ref. [17] is related to J∗ used here by J∗ = 1
2J∗). The gen-

eral features of the NCA spectra, calculated in [17] for the
hypercubic lattice, agree qualitatively with those found
above; and since the present theory is exact for a single
hole, we believe a good assessment of the accuracy of the
Non Crossing Approximation could be obtained via calcu-
lations at as low a hole density as is numerically feasible,
and anticipate the NCA to prove rather accurate.

We turn now to the influence of disorder, which at
T = 0 has been studied by Strack and Vollhardt [15]; and
we consider the semielliptic disorder distribution, equa-
tion (2.36), with G(z) determined for arbitrary T by so-
lution of equation (2.37). The introduction of disorder at
T = 0 does not of course change the underlying physics:
the hole remains localized, with a vanishing dc conduc-
tivity (see Eq. (2.34)). Disorder does however lead [15] to
inhomogeneous broadening of the erstwhile discrete t−J
lines. If the full disorder width 2W < ωp(0) = 1

2J∗ —
where ωp(0) is (for ωp(0)/t∗ < 1) the minimum spacing in
the discrete t−J spectrum — then the t−J lines broaden
separately and do not overlap. For 2W > ωp(0), a back-
ground continuum will by contrast result. This is illus-
trated in Figure 4 showing D(ω) at T = 0 for J∗/t∗ = 0.5
and W/J∗ = 0.5 (a) and 1 (b), the corresponding dis-
crete spectrum for W = 0 being shown in Figure 2a;
with increasing disorder the spectrum naturally broadens
progressively (tending ultimately to the disorder distri-
bution itself, D(ω) = F (ω), in the uninteresting extreme
W � 2t∗).

Comparison of Figure 4a showing disorder-induced in-
homogeneous broadening at T = 0, with Figure 2b where
W = 0 and the broadening is purely thermally induced
(T/TN = 0.5), shows that disorder — which has some
features of additional kinetic energy as noted by Strack
and Vollhardt [15] — mimics somewhat the role of tem-
perature. This analogy should not however be pushed far,
for two reasons. (i) The underlying physics is quite dif-
ferent in the two cases: for T = 0 and any W/t∗ the
hole remains localized, while at finite-T by contrast the
hole is genuinely delocalized with a non-zero static con-
ductivity (discussed in Sect. 4). (ii) D(ω) is an averaged
single-particle spectrum, and as such it is not surprising
that disparate physical mechanisms — whose effects may
be disentangled by analysis of more acute probes of hole
dynamics, such as the dynamical conductivity — produce
a similar effect upon the averaged Green function. In this
regard it is amusing also to note that the effects of a vari-
able second NN hopping matrix element onD(ω) at T = 0,
as studied by Schiller et al. [16], can also mimic the ther-
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Fig. 4. D(ω) vs. ω/t∗ for T = 0, J∗/t∗ = 0.5 and disorder
stregths W/J∗ = 0.5 (a), 1(b). The corresponding spectrum
for W = 0 is given by the dashed line in Figure 2a.
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Fig. 5. D(ω) vs. ω/t∗ for T/TN = 0.5, J∗/t∗ = 0.5 with
W/J∗ = 0.2 (a), and 1.0 (b). The corresponding D(ω) for W =
0 is shown in Figure 2b.

mal evolution of D(ω) for the pure t−J model, as seen by
comparison of Figures 2c and 2d with Figure 5 of refer-
ence [16].

Finally we add that the relative influence of disorder
upon D(ω) is strongly T -dependent, and becomes pro-
gressively weaker with increasing T/TN . To illustrate this
Figure 5 shows D(ω) again for J∗/t∗ = 0.5, with W/J∗ =
0.2 (a) and 1 (b), but now for T/TN = 0.5 — the W = 0
limit of which is shown in Figure 2b. Comparison with
Figure 2b shows that, in contrast to the T = 0 case
(Fig. 4), disorder has only a minor influence on the spec-
trum over the entire W/t∗ range shown, the same being
found upon increasing T/TN .

4 Results: hole conductivity

To illustrate the thermal evolution of the dynamical con-
ductivity, Figure 6 shows the ω-dependence of σ̃(ω;T )
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Fig. 6. Dynamical conductivities for J∗/t∗ = 0.5 and T/TN =
0.3 (a), 0.5 (b), 0.7 (c) and 0.9 (d); ωp(T ) is marked by a
vertical arrow in all cases. The inset to Figure 6a shows the
low-frequency behaviour of σ̃(ω;T ) on an expanded scale.

(Eq. (2.33)) for fixed J∗/t∗ = 0.5 and at four different
temperatures: T/TN = 0.3(a), 0.5(b), 0.7(c) and 0.9(d);
the corresponding single-particle spectra are given in
Figure 2. In the T = 0 string-pinned limit the single-
particle spectrum D(ω) is discrete and, since σ̃(ω;T = 0)
is given in terms of it by equation (2.34), σ̃(ω; 0) likewise
consists of a series of δ-function peaks [15], the first of
which occurs at ω = 1

2J∗(= ωp(T = 0)); in particular, as is
well-known [15], the the static conductivity naturally van-
ishes at T = 0.

For any T > 0 however, the conductivity at low fre-
quencies ω � ωp(T ) in general, and at ω = 0 in par-
ticular, is non-vanishing, reflecting the fact that strict
hole confinement/localization is exclusively a T = 0 phe-
nomenon. This is directly visible in Figures 6b to 6d
(where ωp(T ) = J∗m(T ) is marked by a vertical arrow),
and is illustrated most clearly in the expanded inset to
Figure 6a for T/TN = 0.3 (where ωp(T )/t∗ = 0.2495 re-
mains exponentially close its T = 0 limit of 0.25). Here one
sees the emergence of a non-zero σ̃(ω;T ) for frequencies
ω � ωp(T ), separated from the dominant peak centered
on ω = ωp(T ) (which alone survives at T = 0).

The physical origins of this low-frequency behaviour
may be understood by first noting that the dominant low-
temperature contribution to σ̃(ω;T ) naturally arises from
majority spin hops, as reflected in the ω-dependent inte-
gral

J(ω) =

∫ ∞
−∞

dω1e
−βω1D(ω1)D(ω1 + ω − ωp(T )) (4.1)

contributing to σ̃(ω;T ), equation (2.33). For low tempera-
tures, as discussed in Section 3 and illustrated in Figure 2a
for T/TN = 0.3, D(ω) resembles closely its T = 0 coun-
terpart; in particular (see Fig. 2a) the thermally induced
spectral broadening is much smaller than the separation
between adjacent spectral peaks. In consequence, for fre-
quencies ω � ωp(T ) ' ωp(0) = 1

2J∗, the integrand of

equation (4.1) — and hence σ̃(ω;T ) — is in practice non-
zero only in an ω1 range where adjacent spectral lines are
separated by an amount of order ωp(T ). As discussed in
Section 3 it is the high-frequency lines in D(ω1) — associ-
ated with long strings — that are thus separated. Hence,
as is physically natural, it is these long string states that
control the emergent low-frequency conductivity with in-
creasing T from the T = 0 string-pinned limit.

The above considerations refer to low frequencies, ω �
ωp(T ). More generally, J(ω) will be largest for ω = ωp(T )
(where there is maximal overlap between the spectral den-
sities in Eq. (4.1)), whence from equation (2.33) one ex-
pects σ̃(ω;T ) to be peaked at ω = ωp(T ). That this is
indeed the case over essentially the entire T/TN range, is
seen from Figure 6 on which ω = ωp(T ) is marked (for
T > TN , where ωp(T ) = 0, σ̃(ω;T ) decreases monotoni-
cally with ω from the static limit).

In qualitative terms, the evolution of σ̃(ω;T ) with tem-
perature (Fig. 6) naturally parallels that of D(ω) (Fig. 2),
although coherent structure in σ̃(ω;T ) is thermally eroded
at a lower temperature as seen by comparison of Figures 6c
and 6d with Figures 2c and 2d. For temperatures where
σ̃(ω;T ) exhibits little coherent structure, the conductiv-
ity nonetheless has the rather striking ω-dependence illus-
trated in Figure 6c for T/TN = 0.7, whereby σ̃(ω;T ) first
increases with ω from the static limit, reaches a maximum
at ω = ωp(T ) and decreases thereafter with increasing ω.
This characteristic behaviour persists over an appreciable
temperature range, but is naturally destroyed gradually
with increasing T/TN , and σ̃(ω;T ) ultimately becomes
a monotonically decreasing function of ω (Fig. 6d). We
also note in passing that the exact σ̃(ω;T ), illustrated in
Figure 6, is in marked contrast to what arises in an approx-
imation [15] whereby the T -dependences of pασ, ωp(T ) and
D(ω) are neglected and replaced by their T = 0 counter-
parts (cf. Sect. 2.3): here σ̃(ω;T ) at finite-T has exactly
the same δ-function ω-dependence as its T = 0 limit (but
with thermally modified poleweights), and the approxi-
mation fails qualitatively to capture the correct ω- or T -
dependence of the conductivity.

The examples of Figure 6 refer to a fixed J∗/t∗ = 0.5,
and the dependence upon this ratio again parallels that
of D(ω) described in Section 3; the rule of thumb being
that for fixed T/TN , increasing J∗/t∗ produces a some-
what ‘colder’ D(ω) or σ(ω;T ). This is evident from com-
parison of Figures 6b and 8a (discussed below), which for
fixed T/TN = 0.5 show σ̃(ω;T ) vs. ω for J∗/t∗ = 0.5 and
1 respectively.

The T -dependence of the static conductivity σ̃0(T ) =
σ̃(ω = 0;T ), to which we now turn, exemplifies clearly
the relative roles of J∗ and t∗ in the magnetically or-
dered and paramagnetic phases. Figure 7 shows σ̃0(T ) vs.
T/t∗ for J∗/t∗ = 0.5, 0.8 and 1.0. For T > TN = 1

4J∗
in the paramagnetic phase, pασ = 1

2 and ωp(T ) = 0
(Eqs. (2.5b, 6)), and D(ω) is independent of both J∗ and
T (Eq. (2.21b)). Hence from equation (2.33), σ̃0(T ) in
the paramagnet is entirely independent of J∗, depends
solely on T/t∗ (as seen explicitly in Fig. 7), and reduces
to its well-known J∗ = 0 limit [4,14]: σ̃0(T ) decreases
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Fig. 7. Static conductivities σ̃0(T ) vs. T/t∗ for J∗/t∗ = 0.5
(solid line), 0.8 (dashed) and 1.0 (dotted). Inset: the same re-
sults for σ̃0(T )/σ̃0(TN ) vs. T/TN = 4T/J∗, showing scaling
behaviour in the ordered phase.
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Fig. 8. Dynamical conductivities for J∗/t∗ = 1 and T/TN =
0.5, with W/J∗ = 0 (a), 0.2 (b), 0.5 (c) and 1.5 (d).

monotonically with increasing T above TN , approaching
its asymptotic behaviour σ̃0(T ) ∼ 1/T on the high tem-
perature ‘band’ scale T/t∗ ∼ 1 − 2. In the antiferromag-
netic phase, by contrast, it is as expected the much smaller
scale TN = 1

4J∗, and not the hopping t∗, that sets the scale
for the thermal evolution of σ̃0(T ). For T/TN � 1, σ̃0(T )
is exponentially small, behaving asymptotically for T → 0
as σ̃0(T ) ∼ 1

T exp(−|ωL|/T ) with ωL = −|ωL| the lower
band edge in D(ω) (as may be shown from Eq. (2.33)).
σ̃0(T ) increases progressively with T throughout the or-
dered phase, reflecting the enhanced thermal broadening
of D(ω) (Fig.2) and the progressively increasing impor-
tance of minority spin hops; and at T = TN the dc con-
ductivity acquires a sharp cusp across which dσ̃0(T )/dT

0.0 1.0 2.0 3.0 4.0 5.0
T/TN

0.0

1.0

2.0

σ 0

~
  (

T
)

Fig. 9. Static conductivities σ̃0(T ) vs. T/TN for J∗/t∗ = 1.0
and W = 0 (solid line), 0.5 (dashed), 1.5 (dotted).

changes sign to a negative value characteristic of ‘clean’
hole propagation.

While σ̃0(T ) depends upon both J∗ and t∗ in the or-
dered phase T < TN , the dominance of the former scale is
evident from the inset to Figure 7, where σ̃0(T )/σ̃0(TN)
is now shown as a function of T/TN = 4T/J∗. From this
it is seen that for T/TN < 1, σ̃0(T )/σ̃0(TN ) is an almost
universal function of T/TN ; which ‘scaling’, while pristine
only for T ' TN , shows the controlling influence of T/J∗
in the antiferromagnet.

Finally, we consider briefly the influence of disorder
upon the dynamical conductivity, σ̃(ω;T) being given again
by equation (2.33). Figure 8 shows σ̃(ω;T ) vs. ω/t∗ for
a fixed temperature T/TN = 0.5 with J∗/t∗ = 1, and
for four different disorder strengths W/J∗. Increasing dis-
order leads as expected to inhomogeneous broadening of
the dynamical conductivity and consequent erosion of co-
herent structure, the effect being somewhat more pro-
nounced than that upon D(ω) illustrated in Figure 5 (for
J∗/t∗ = 0.5).

Of particular interest is the influence of disorder on
the static conductivity σ̃0(T ). For T = 0 the dc conduc-
tivity is identically zero for all disorder strengths [15] as
seen explicitly from equation (2.34), so the question is
pertinent only at finite temperature. From Figure 8 it is
seen that σ̃0(T ) = σ̃(ω = 0;T ) decreases progressively
with increasing disorder strength. This is at variance with
the results of Strack and Vollhardt [15], who found a new
effect whereby σ̃0(T ) is actually enhanced with increas-
ing disorder over a wide disorder interval; see Figure 13
of reference [15]. Such behaviour arises upon neglect of
the T -dependence of D(ω) in equation (2.33) for σ̃(ω;T )
(as well as that of pασ and ωp(T )), D(ω) therein being re-
placed by its T = 0 limit corresponding to retention solely
of the Néel spin configuration. This amounts in effect to a
rigid band approximation to D(ω), and since disorder in-
duces a T -independent spectral broadening of the discrete
t−J lines arising for W = 0, the effect found by Strack
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and Vollhardt [15] is readily understood. Unfortunately,
it is however an artifact of the underlying approximation:
for any finite temperature we find by contrast that the
exact static conductivity obtained from equation (2.33)
decreases monotonically with increasing disorder, as illus-
trated in Figure 9 showing σ̃0(T ) vs. T/TN for J∗/t∗ = 1
and W/J∗ = 0, 0.5 and 1.5, and in accordance with one’s
physical expectation that disorder should diminish static
hole transport in both the antiferromagnetic and param-
agnetic phases.

5 Summary

We have investigated in this paper the thermal evolu-
tion of the dynamics of a hole in an antiferromagnetic
spin background, as described by the t−J model, and
in the limit of large spatial dimensions, d = ∞, where
an exact solution has been obtained. Resultant single-
particle spectra and dynamical hole conductivities exhibit
a rich frequency and temperature dependence that reflects
the strong variation with temperature, on scales of order
TN = J∗/4, of the coupling bewteen hole motion and the
spin background; and which exemplify clearly the thermal
evolution of the underlying string picture from the T = 0
string-pinned limit through to the paramagnetic phase.
The additional effects of quenched site disorder have also
been included, leading to exact results in infinite-d for the
interplay between static disorder and thermally induced
hole dynamics.

The underlying methodology — in particular that of
the Feenberg renormalized perturbation series (RPS) — is
physically transparent, and not confined to the pure t−J
model studied here. Equation (2.16) for example is quite
general and may be used, in conjunction with the RPS, to
investigate e.g. the important effects of a second nearest
neighbour hole hopping [16]; which even for a Bethe lattice
involves non-retraceable loop paths, and likewise admits
in d =∞ to an exact solution for all T [23].

Finally, we add that the approach described here in the
d =∞ limit may be used as a basis for the development of
approximation schemes in finite-d. Work on this problem
is currently in progress, but a brief qualitative comment
is in order. In d =∞, where simple molecular field theory
for the spin background is exact, spin correlations reflect
solely (and trivially) long-ranged order, and are entirely
absent in the paramagnetic phase. In finite-d, by con-
trast, significant local antiferromagnetic spin correlations
persist well into the paramagnetic phase, being wiped
out only on scales T � J . Thus, even for T > TN , a σ-spin

hole is more probably surrounded by −σ-spins, and an
exchange energy penalty or gain may again arise under
single-step hole transfer, according to which spin hops. In
consequence, even in the paramagnet, one expects the be-
haviour of e.g. σ(ω;T ) to exhibit an ω- and T -dependence
akin to that found in d = ∞ for the ordered phase (see
e.g. Figs. 6c, 6d), behaviour symptomatic of the persistent
strong interaction between the moving hole and the spin
background, and to which we will return in a later paper.
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FdChI through a Kekulé scholarship.
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